# SPINOR

Statistical Physics of Inference and Network Organization

## RESEARCH QUESTIONS

Â

## CURRENT AND PAST GROUPÂ MEMBERS

to join our group contact us at yasser dotÂ roudi at ntnu doÂ no

Â

## PUBLICATIONS

Â

### Tombaz T., Dunn B., Hovde K., Cubero R., Mimica B., Mamidanna P., Roudi Y., Whitlock J, Action representation in the mouse parieto-frontal cortex, bioRxiv:646414, under review

### Cubero R., Marsili M., Roudi Y. Finding informative neurons in the brain using Multi Scale Relevance, arXiv:1802.10354 [q-bio.NC], under review

### Monsalve-Mercado M. M., Roudi Y. (2019) Hippocampal spike-time correlations and place field overlaps during open field foraging, Hippocampus, 1-13

### Cubero R., Jo J., Marsili M., Roudi Y., Song J. (2019) Statistical Criticality arises in Maximally Informative Samples, J Stat Mech 063402

### Bulso N., Marsili M., Roudi Y. (2019) On the complexity of logistic regression models, Neural Computation, 38 (9)

### Salahshour M., Roudhani S., Roudi Y. (2019) Phase transitions and asymmetry between signal comprehension and production in biological communication, Sci. Rep. (9) 3428

### Cubero R., Marsili M., Roudi Y. (2018) Minimum description length codes are cirtical, Entropy 20 (10), 755

### Bretta A., Battistin C., Du Mulatier C., Mastromatteo I, Marsili M. (2018) The stochastic complexity of spin models: are pairwise models really simple, Entropy 20 (10) 739

### Dunn B., Battistin C. (2017) The appropriateness of ignorance in the Kinetic Ising model, J Phys A: Math. Theor. (50) 124002

### Dunn B., Wennberg D., Huang Z-W., Roudi Y.Â (2017)Â Grid cells show field-to-field variability and this can explain aperiodic firing of inhibitory interneurons,Â biorxiv:101899v1

### Kanter B. R., Lykken, CM., Avesar D., Weible A., Dickinson J., Dunn B., Borgesius N. Z., Roudi Y. ,Â Kentros C.G., (2017)Â Transgenic depolarization of medial entorhinal cortex layer II neurons reveals a potential novel mechanismÂ of the grid-to-place cell transformation, Neuron , 93 (6): 1480-1492

### Hertz J., Roudi Y. , Sollich P. (2017)Â Path integral methods for the dynamics of stochastic and disordered systems, J Phys A , 50:033001

### Battistin C., Dunn B., Roudi Y.Â (2017)Â Learning with unknowns: analyzing biological data in the presence of hidden variables, Curr. Op.Â Sys. Biol. , 1:122-128

### Bachschmid-Romano L., Battistin C., Opper M., Roudi Y.Â (2016)Â Variational perturbation and extended Plefka approaches to the dynamics on random networks: theÂ case of the kinetic Ising model, J Phys A, 49:434003

### Bulso N., Marsili M., Roudi Y.Â (2016)Â Sparse model selection in the highly under-sampled regime, J Stat Mech, 093404

### Rowland D., Roudi Y. , Moser M-B., Moser E. (2016)Â 10 years of grid cells, Annual Rev. of Neurosci. , 39:2

### Borysov S., Roudi Y. , Balatsky A. (2015)Â US stock market interaction network as learned by the Boltzmann Machine, EPJ B , 88(12): 1-14

### Battistin C., Hertz J., Tyrcha J., Roudi Y.Â (2015)Â Belief-Propagation and replicas for inference and learning in a kinetic Ising model with hidden spins,Â J Stat. Mech. , P05021

### Roudi Y., Taylor G. (2015)Â Learning with hidden variables, Curr. Opin. Neurobio., 35: 110-118

### Roudi Y., Dunn B., Hertz J. (2015)Â Multi-neuronal activity andÂ functionalÂ connectivity in cell assemblies, Curr. Opin. Neurobiol., 32:38-Â 44

### Dunn B., Morreaunet M., Roudi Y.Â (2015)Â Correlations and functional connections in a population of grid cells, PLoS Comp. Biol.Â 11(2):Â e1004052.

### Moser E. I., Roudi Y. , Witter M. P., Kentros C., Bonhoeffer T., Moser M-B (2014)Â Grid cells and cortical representation, Nat. Rev. Neurosci.Â 15:466-481

### Zeng H-L., Hertz J., Roudi Y.Â (2014)Â L1Â regularization for reconstruction of a non-equilibrium Ising model, Phys. Scrip. , 80 (10): 105002

### Moser E. I., Moser M-B., Roudi Y.Â (2014)Â Network mechanisms of grid cells, Phil. Trans. Roy. Soc. , 369:20120511.

### Roudi Y., Moser E. I. (2014)Â Grid cells in an inhibitory network, Nature Neuroscience, 17:639

### Marsili M., Mastromatteo I., Roudi Y.Â (2013)Â On sampling and modeling complex systems, J. Stat. Mech. , P09003

### Latham P., Roudi Y.Â (2013)Â Role of stimulus-dependent correlation in population coding,Â in Principles of Neural Coding , S. Panzeri and R. Q. Quiroga Eds

### Hertz J., Roudi Y. , Tyrcha J. (2013)Â Ising model for inferring network structure from spike data,Â in Principles of Neural Coding , S. Panzeri and R. Q. Quiroga Eds

### Zeng H-L., Alava M., Aurell E., Hertz J., Roudi Y.Â (2013)Â Maximum likelihood reconstruction of Ising models with asynchronous updates, Phys. Rev. Lett.Â 110:210601

### Dunn B., Roudi Y.Â (2013),Â Learning and inference in a nonequilibrium model with hidden nodes, Phys. Rev. E. , 87:022127

### Tyrcha J., Roudi Y. , Marsili M., Hertz J. (2013)Â The effect of nonstationarity on models inferred from neural data, J. Stat. Mech., P03005

### Couey J. J.*, Witoelar A.*, Zhang Sh-J.*, Ye J., Dunn B., Czajkowski R., Moser M-B., Moser E.I.,Â Roudi Y. , Witter M.P. (2013) Recurrent inhibitory circuitry as a mechanism for grid formation, Nat.Â Neuro.Â 16 (3):309Â equal contribution *

### Bonnevie T., Dunn B., Fyhn M., Hafting T., Derdikman D., Kubie J.L., Roudi Y. , Moser E.I., MoserÂ M-B. (2013) Grid cells require excitatory drive from the hippocampus, Nat. Neuro.Â 16 (3):318

### Bomash I., Roudi Y. , Nirenberg S (2013)Â A virtual retina: a tool for studying population coding, PLoS One , 8(1): e53363

### Sakellariou J., Roudi Y. , Mezard M., Hertz J. (2012)Â Effect of couplingÂ asymmetry on mean-field solutions of the direct and inverse Sherrington-KirkpatrickÂ model, Phil. Mag., 92: 272

### Giacomo L., Roudi Y.Â (2012)Â The neural encoding of space in parahippocampal cortices, Frontiers in Neural Circuits , 6:53

### Roudi Y., Hertz J. (2011)Â Dynamical TAP equations for non-equilibrium Ising spin glasses, J. Stat. Mech., P03031

### Roudi Y., Hertz J. (2011)Â Mean field theory for nonequilibrium network reconstruction, Phys. Rev. Lett., 106(4):048702

### Witoelar A., Roudi Y.Â (2011)Â Neural network reconstruction using kinetic Ising models with memory, BMC Neuroscience , 12 (SupplÂ 1):P274

### Tyrcha J., Roudi Y. , Hertz J. (2011)Â Network inference from non-stationary spike trains, BMC Neuroscience , 12 (Suppl 1):P150

### Aurell E., Ollion C., Roudi Y.Â (2010)Â Dynamics and performance of susceptibility propagation on synthetic data, Euro. Phys. J. B , 77:587

### Hertz J., Roudi Y. , Thorning A., Tyrcha J., Aurell E., Zeng H. (2010)Â Inferring network connectivity using kinetic Ising models, BMC Neuroscience , 11 (Suppl 1):P51

### Roudi Y., Aurell E., Hertz J. (2009)Â Statistical physics of pairwise probability models, Front. in Comp. Neurosci., 3:22

### Roudi Y., Tyrcha J., Hertz J. (2009)Â Ising model for neural data: model quality and approximate methods for extracting functional connectivity,Â Phys. Rev. E, 79:051915

### Roudi Y., Tyrcha J., Hertz J. (2009)Â Fast and reliable methods forÂ extractingÂ functional connectivity in large populations, BMCÂ Neuroscience,Â 10, Suppl. 1 (selected for oral presentation at CNS 2009)

### Latham P. E., Roudi Y.Â (2009)Â Mutual Information, Scholarpedia , 4(1):1658.

### Roudi Y., Nirenberg S., Latham P. E. (2009)Â Pairwise maximum entropy models for studying large biological systems: when they can and whenÂ they canâ€™t work, PLoS Comp. Biol., 5(5): e1000380.

### Roudi Y., Treves A. (2008)Â Representing where along with what information in a model of a cortical patch, PLoS Comp. Biol.Â 4(3): e1000012.

### Roudi Y., Latham P. E. (2007)Â A balanced memory network, PLoS Comp. Biol. 3(9):1679

### Roudi Y., Treves A. (2006)Â Localized activity profiles and storage capacity of rate-based autoassociative networks, Phys. Rev. E,Â 73:061904.

### Roudi Y., Treves A. (2004)Â An associative network with spatially organized connectivity, J. Stat. Mech. P07010.

### Roudi Y., Treves A. (2003)Â Disappearance of spurious states in analog associative memories, Phys. Rev. E 67:041906.

### Roudi Y. (1999)Â Breaking the strings that connect hanging masses, Journal of Physics (Iran), 17:99.

## CONTACT US

Kavli Institute for Systems Neuroscience and Centre for Neural Computation

Olav Kyrres gate 9, 7030 Trondheim, Norway

Â